Parameter Choice Matters: Validating Probe Parameters for Use in Mixed-Solvent Simulations
نویسندگان
چکیده
Probe mapping is a common approach for identifying potential binding sites in structure-based drug design; however, it typically relies on energy minimizations of probes in the gas phase and a static protein structure. The mixed-solvent molecular dynamics (MixMD) approach was recently developed to account for full protein flexibility and solvation effects in hot-spot mapping. Our first study used only acetonitrile as a probe, and here, we have augmented the set of functional group probes through careful testing and parameter validation. A diverse range of probes are needed in order to map complex binding interactions. A small variation in probe parameters can adversely effect mixed-solvent behavior, which we highlight with isopropanol. We tested 11 solvents to identify six with appropriate behavior in TIP3P water to use as organic probes in the MixMD method. In addition to acetonitrile and isopropanol, we have identified acetone, N-methylacetamide, imidazole, and pyrimidine. These probe solvents will enable MixMD studies to recover hydrogen-bonding sites, hydrophobic pockets, protein-protein interactions, and aromatic hotspots. Also, we show that ternary-solvent systems can be incorporated within a single simulation. Importantly, these binary and ternary solvents do not require artificial repulsion terms like other methods. Within merely 5 ns, layered solvent boxes become evenly mixed for soluble probes. We used radial distribution functions to evaluate solvent behavior, determine adequate mixing, and confirm the absence of phase separation. We recommend that radial distribution functions should be used to assess adequate sampling in all mixed-solvent techniques rather than the current practice of examining the solvent ratios at the edges of the solvent box.
منابع مشابه
A Parameter Uniform Numerical Scheme for Singularly Perturbed Differential-difference Equations with Mixed Shifts
In this paper, we consider a second-order singularly perturbed differential-difference equations with mixed delay and advance parameters. At first, we approximate the model problem by an upwind finite difference scheme on a Shishkin mesh. We know that the upwind scheme is stable and its solution is oscillation free, but it gives lower order of accuracy. So, to increase the convergence, we propo...
متن کاملDouble Langmuir probe measurement of plasma parameters in a dc glow discharge
In this paper, plasma main characteristics such as electron mean temperature, electron number density, and oscillation frequency have been measured experimentally using the double Langmuir probe diagnostic system. In our experiment, the plasma was generated by applying the low pressure dc glow discharge in several common gases. The experimental results indicated the highest plasma density and o...
متن کاملFirst mesospheric in-situ measurement in Iran using sounding rockets and plasma impedance probe (PIP)
This paper reports on the progress for the first development of rocket probe for in-situ measurement of ionospheric plasma parameters in Iran. The designed probe known as Plasma Impedance Probe (PIP) will be used to measure the electron density, electron-neutral collision frequency, background magnetic field, and temperature in the mesospheric and in the altitude range of 70 km to 150 km. This ...
متن کاملImplicit Solvation Parameters Derived from Explicit Water Forces in Large-Scale Molecular Dynamics Simulations
Implicit solvation is a mean force approach to model solvent forces acting on a solute molecule. It is frequently used in molecular simulations to reduce the computational cost of solvent treatment. In the first instance, the free energy of solvation and the associated solvent-solute forces can be approximated by a function of the solvent-accessible surface area (SASA) of the solute and differe...
متن کاملDynamics around solutes and solute-solvent complexes in mixed solvents.
Ultrafast 2D-IR vibrational echo experiments, IR pump-probe experiments, and FT-IR spectroscopy of the hydroxyl stretch of phenol-OD in three solvents, CCl4, mesitylene (1, 3, 5 trimethylbenzene), and the mixed solvent of mesitylene and CCl4 (0.83 mole fraction CCl4), are used to study solute-solvent dynamics via observation of spectral diffusion. Phenol forms a complex with Mesitylene. In the ...
متن کامل